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Abstract. We review briefly efficient numerical methods for computing
non-LTE model stellar atmospheres. We give emphasis to methods that
use the Accelerated Lambda Iteration and related methods. Finally, the
computer program TLUSTY is briefly described.

1. Introduction

There is hardly any need to stress that modeling stellar atmospheres has un-
dergone dramatic improvements during the last decade. This was, in fact, the
reason for organizing this Workshop. At the same time, recent advances in ob-
servational detectors have resulted in unprecedented quality (and quantity) of
stellar spectra. Because of that, many astronomers, who would otherwise not
be very interested in stellar atmospheres, are feeling a need to have better mod-
els than those previously used, in particular the broad grid of Kurucz (1994)
models. Stellar atmosphere theory and modeling are thus enjoying a period of
revival.

On the modeling side, the central role in the development of the efficient
numerical techniques has been played by Accelerated Lambda Iteration (ALI)
methods. The method was reviewed in these Proceedings by Hubeny. In this
paper, we will discuss its specific application to modeling stellar atmospheres.
Because the case of spherical expanding atmospheres will be covered by sev-
eral other contributions in this volume (Hamann; Koesterke; Hillier, Hoeflich,
Hauschildt), we will concentrate here on a simple problem, 1-D, plane-parallel,
hydrostatic atmospheres, i.e. stellar photospheres. In particular, we will discuss
the basic philosophy of various numerical schemes rather than describe details
of any particular method.

2. Basic Structural Equations

Consider first the basic structural equations that describe a stellar atmosphere
as a plane-parallel, horizontally-homogeneous (i.e., 1-D) slab, in hydrostatic and
radiative equilibrium.
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Radiative transfer equation. The most advantageous form of the transfer equa-
tion for the use in model atmosphere construction is the second-order form,

d*(f,J,
L -5, (1)
where 7, is the monochromatic optical depth and f, is the variable Eddington
factor (Auer & Mihalas 1970). Equation (1) contains only the mean intensity
of radiation, J, (a function of frequency and depth), not the specific intensity,
I, (which is also a function of angle p). In fact, it is the mean intensity of
radiation that enters other structural equations, and the rate equations, therefore
mean intensities, not specific intensities, are the appropriate variables to take as
atmospheric state parameters. An obvious numerical advantage is that instead
of dealing with NF' x NA quantities describing the radiation field per depth-
point (NF and NA being the number of discretized frequency and angle points,
respectively), we have only NF parameters. However, f, is not given a priori;
it has to be computed by a separate set of formal solutions for the specific
intensities, one frequency at a time, and gradually updated using current values
of optical depth and the source function.

Hydrostatic equilibrium equation. This equation reads

dP
_— = 2
where P is the total pressure, and m the Lagrangian mass, dm = —pdz, with

p being the density and z the geometrical distance measured along the normal
to the surface from the bottom of the atmosphere to the top. g is the surface
gravity, which is assumed constant throughout the atmosphere, and given by
g = GM,/R?, where M, and R, are the stellar mass and radius, respectively;
G is the gravitational constant. The total pressure is generally composed of
three parts, the gas pressure, Py, the radiation pressure, Pr,q, and the “turbu-
lent pressure, P;yb”. The gas pressure is given, assuming an ideal gas equation
of state, by Pyas = NKT, where N is the total particle number density, T' the
electron temperature (we assume that all the particles have the same kinetic tem-
perature), and k the Boltzmann constant. The hydrostatic equilibrium equation
may then be written as (neglecting “turbulent pressure”)

dPgs _ 4w deV:g_ﬁ/“&Hydy (3)
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where H,, and K, are the first and second angular moments of the specific in-
tensity, respectively. The r.h.s. of this equation is usually called the effective
gravitational acceleration, resulting from the action of a true gravitational ac-
celeration (acting downward) minus a radiative acceleration (acting outward).

Radiative equilibrium equation. It can be written either as expressing conser-
vation of the total radiation flux (the so-called differential form),
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where T is the effective temperature, and o the Stefan-Boltzmann constant.
The radiative equilibrium equation can also be written as an equality of the
total absorbed and emitted energy (the integral form),

/000 (kpdy —my)dv =0, (5)

where k, is the thermal absorption coefficient, and 7, the thermal emission
coefficient (the scattering contributions cancel out when one assumes coherent
scattering, which is usually the case in stellar atmospheres).

Both equations are equivalent, but have different numerical properties. To
improve a numerical accuracy of the solution, one either considers the integral
form at the upper layers of the atmosphere and the differential one at deep layers
(Gustafsson 1971; Hubeny 1988), or one considers a linear combination of both
forms (Hubeny & Lanz 1995; Werner & Dreizler 1999).

An alternative expression of radiative equilibrium is the condition of thermal
balance of electrons, stating that total energy added to the electron thermal pool
by radiative and collisional processes is equal to the energy removed from the
thermal pool. This condition is usually used in modeling photoionized media
(Osterbrock 1989); it was used for constructing model stellar atmospheres by
Kubidt et al (1999; see also Kubét, this volume). It was also used by Hillier &
Miller (1998) as a check of their radiative + statistical equilibrium solution.

Statistical equilibrium equations. They are also called rate equations, and are
usually written as

i ) (Rij + Cij) = Y nj (Rji + Cyi) (6)
J#i J#i
where n; is the population (occupation number) of level ¢, R;; and Cj; is the ra-
diative and collisional rate, respectively, for the transition from level 7 to level j,
including continuum states. The radiative rates depend on the radiation inten-
sity, while the collisional rates are assumed to be given functions of temperature
and electron density.

The set of rate equations for all levels of an atom would form a linearly
dependent system. Therefore, one equation of the set has to be replaced by
another equation. Usually, this is the total number conservation equation (or
abundance definition equation), >, n; = Natom, where the summation extends
over all levels of all ions of a given species.

Charge conservation equation. This equation expresses the global electric neu-
trality of the medium,
ZniZi—ne:O, (7)
i

where Z; is the charge associated with level i (i.e. equal to 0 for levels of neutral
atoms, 1 for levels for once ionized ions, etc.), and n, is the electron density.
The summation extends over all levels of all ions of all species.

Auziliary equations. The above set of structural equations have to be comple-
mented by equations defining the absorption and emission coefficients, expres-
sions for atomic cross-sections, and other auxiliary expressions.



54 Hubeny & Lanz

3. Solution by Complete Linearization

The basic structural equations (1) - (7) are discretized in frequency and depth,
which yields a set of highly—coupled, non-linear algebraic equations. The funda-
mental problem of stellar atmosphere modeling is to find a robust and efficient
method for a numerical solution of these equations. The decisive breakthrough,
and in fact the beginning of the modern era of stellar atmosphere models, was
the development of the complete linearization (CL) method by Auer & Mihalas
(1969). This was the first scheme to treat all equations at the same footing, thus
solving all structural equations simultaneously. Before that, the equations were
typically solved one at a time, iterating between them. In many cases, iterations
were slow, or a scheme failed to converge at all.

We shall first briefly outline the complete linearization method. The phys-
ical state of an atmosphere is fully described by the set of vectors 1, for every
depth point d, d =1,..., ND, ND being the total number of depth points. The
state vector 14 is given by

,(pd:{Jla'"aJNFaNaTaneanla---7'n'NL}a (8)

where J; is the mean intensity of radiation in the i-th frequency point; we
have omitted the depth subscript d. The dimension of the vector 1, is NN,
NN = NF + NL + NC, where NF is the number of frequency points, NL the
number of atomic energy levels for which the rate equations are solved, and NC
is the number of constraint equations (NC' = 3 in the present case; we leave NC
as a general number since in some cases it may be larger than 3, for instance
in the case of radiative + convective equilibrium it is advantageous to add an
additional state parameter A, the logarithmic gradient of temperature, etc.).
The set of structural equations may be formally written formally as

P(x) = 0, (9)

where x is a vector formed from all vectors 14, x = {¢1,...,%np}. The origi-
nal complete linearization is nothing else than the Newton—-Raphson method of
solving Eq.(9), namely

Xm0 = x(m — 7 (x) 7 P (x™), (10)

where J is the Jacobi matrix (Jacobian), J;; = 0P;/0x;, i.e. the ij-element
of the Jacobian is the derivative of the i-th equation with respect to the j-th
unknown. Since the system (9) represents a finite difference solution of at most
second—order differential equations the Jacobian J has a particularly simple
structure, namely a block—tridiagonal form, and Eq. (9) reduces to,

—Ag0tpg_1 + Bgdpg — Cqdtpg1 = Lg- (11)

Here A, B, C are NN x NN matrices, and Ly = Py (x(")) is the residuum vector

(of dimension NN) at depth d. Equation (11) is solved as a block-tridiagonal
system, which, by the way, can be done in place (i.e. without additional storage
beyond A, B, C.) We are left with inverting one NN x NN matrix per depth
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point. Therefore, the total computer time for ordinary complete linearization
scales roughly as
(NF + NL + NC)* x ND x Nie . (12)

It is immediately clear that the original complete linearization, despite its
inherent power and robustness, cannot be used as a general numerical scheme
because in realistic calculations one must use a very large number of frequency
points NF' to describe the radiation field sufficiently accurately — of the order
of 10° to 10% points. Inverting matrices of this dimension is completely out of
question. One obviously must seek less global, but much faster schemes.

4. The Quest for the Most Efficient Method of Simultaneous Solu-
tion of The Structural Equations

4.1. Overview

Any method should solve all the structural equations, although not necessarily
simultaneously as the complete linearization does. The art is to find a procedure
that allows one not to solve all the equations simultaneously (that is, some
information is being lagged behind), while remaining sufficiently efficient and
robust. Taking equation (12) as a guide, we list below a number of options that
can be used to reduce the total computer time. We first outline all the options,
then discuss some of the most important possibilities in detail.

1. Modifications within the framework of standard linearization:

e Reducing NF
— coarse frequency resolution; neglecting lines
— A-iteration type of treatment of some frequency points
— frequency blocks
— applying ALI
Reducing NL
— LTE
— simplified atomic models

— superlevels
— level grouping
— level zeroing

Reducing NC

— solving hydrostatic equilibrium equation separately

— solving radiative equilibrium equation separately
Reducing ND

— coarse depth resolution

— multigrid schemes

— adaptive grids

Reducing Nie,
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— improved formal solution
— acceleration of convergence (e.g., Ng)
— successive over-relaxation

2. Using linearization, but avoiding inverting the Jacobian

e Broyden method
e Kantorovich method

3. Approximate Newton-Raphson method

4. Not using linearization at all

4.2. Improvements of Standard Linearization

Here we discuss in more detail the first category of options, namely those in
which the global framework of complete linearization remain intact, while the
efficiency is gained by reducing the size of the state vector. i.e., by reducing the
size of matrices to be inverted.

Reducing NF There are several ways to achieve this:

i) The obvious possibility is to consider only a low number of frequencies.
This was actually approach that had to be adopted in applications of the original
complete linearization method. However, as we aim at constructing a method
that is able to provide an “exact” solution for the stellar atmosphere problem,
we do not consider this possibility

i1) The next simplest approach is to linearize mean intensities only those
frequencies that are “essential”, while keeping the others fixed during lineariza-
tion and updating them during a subsequent formal solution. Such an idea was
implemented, for instance, in the original CL program by Mihalas et al. (1975),
who actually used a more sophisticated equivalent-two-level-atom (ETLA) pro-
cedures, and in early versions of the program TLUSTY (Hubeny 1988).

By “formal solution” we mean a solution of one equation at at time, using
current values of all other state parameters (for instance, solving the radiative
transfer equation for given frequency for current values of the level populations,
temperature, and electron density). The fixed-rates approach has proved to
be useful in some cases, but if too many transitions are taken in this mode
one basically recovers a Lambda-iteration type of behavior, which is a serious
drawback. In particular, the convergence rate is slow, and the solution tends to
stabilize rather than truly converge. Using ETLA procedure partly overcomes
this problem, but it is much more time-consuming.

i1i) Another way is to adopt the multi-frequency /multi-grey method (An-
derson 1985; 1989). Basically, one substitutes (Ji,...,Jxr) = (Ji,-..,JnB),
where J; represents a mean intensity characteristic of i-th frequency block, and
NB is the number of blocks. In order to achieve a substantial reduction of time
we have NB < NF. Each block groups together all frequencies for which the
radiation is formed in a similar way. It is not necessary that the block be com-
posed of a continuous frequency interval (for instance, one block may represent
all wings of weak lines, etc. — see Anderson 1985). The essence of the method
consists of selecting appropriate frequency bands and the individual frequency
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points belonging to them. However, this is also a drawback of the method, since
the bands have to be set essentially by hand.

iv) Finally, the Accelerated Lambda Iteration (ALI) method (see, e.g.,
Hubeny, in this Proceedings and references there) reduces the number of un-
knowns even more, because it is able to eliminate all frequency points com-
pletely. This is achieved by expressing the mean intensity of radiation as

IS = M5S0 + (A — A7) Y, (13)

where A, and A} are the exact and the approximate Lambda operator, and
S, the source function, all at frequency v. The superscript n indicates the
iteration number. The mean intensity of radiation is thus represented by two
terms. The second one — the “correction” term — is known from the previous
iteration and is thus not linearized, while the first one represents an action of an
approximate (and, therefore, simple) operator, A*, on the source function, which
is expressed as a function of temperature, density, and atomic level populations.
The radiative transfer equations are thus eliminated from the coupled system of
structural equations. The method was developed by Hubeny & Lanz (1995), who
coined the term “hydrid complete linearization/accelerated Lambda iteration”
(CL/ALI) method. We shall return to this method in § 5.3..

Reducing NL  While the above described methods, in particular the hybrid
CL/ALI method, are able to reduce the value of the dominant component of the
state vector (NF'); the second largest component, the total number of atomic
energy levels for which the statistical equilibrium equations are solved (NL), may
still be prohibitively large. For instance, the iron-peak elements have typically
some 10,000 levels per ion, so the total number of levels may actually become
comparable to the total number of frequency points. Again, there are several
ways to cope with this problem:

i) A straightforward way is to assume Local Thermodynamic Equilibrium
(LTE), in which case the atomic level populations are given by the Saha-Boltzmann
distributions, and are thus given functions of 7" and n.. However, we intend to
construct more realistic, non-LTE models, so we reject this option.

i1) Analogously to the case of NF', an obvious possibility is to use simplified
model atoms, in which only several most important (usually low-lying) levels
are considered explicitly. The remaining levels are either neglected, or treated
in LTE. A variant of the latter approach is to express the total population of non-
explicit, higher levels through the partition function (Hubeny 1988). Generally,
such a strategy may work for light elements, but cannot be used for iron-peak
elements because of an large number of levels in the whole energy range.

i11) A much better approach is to consider so-called superlevels (Anderson
1989; Dreizler & Werner 1993; Hubeny & Lanz 1995). The idea consists of group-
ing several (many) individual energy levels together, to form a “superlevel”. The
basic physical assumption is that all real levels j forming the superlevel J have a
common NLTE departure coefficient, or, in other words, all components j are in
Boltzmann equilibrium with respect to each other. There is a certain flexibility
in choosing a particular partitioning of individual levels into superlevels. Various
authors use different approaches to set up superlevels; we have used (Hubeny
& Lanz 1995) an explicit criterion that all levels within a superlevel must have
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the same parity. The actual choice is made by inspecting the distribution of the
individual excitation energies for levels in the even and the odd parity system,
looking for clustering of energies. One selects typically 10 to 60 superlevels per
ion. The idea of superlevels may be used for any species, not only for iron-peak
elements. In fact, this approach has always been used in astrophysical radia-
tive transfer without being called such; for instance one typically works with
hydrogenic levels that are specified only by the main quantum number n and
the populations of the individual [ states are summed up; or in most cases the
individual J components of the multiplet systems are lumped to one LS level,
etc.

iv) Another idea, which may significantly reduce the number of level pop-
ulations to be linearized is the idea of level grouping. The level group is a set
of one or more levels whose populations are assumed to vary in a coordinated
way in the linearization. More precisely, instead of linearizing the individual
level populations, one linearizes the total population of the groups, assuming
that the ratios of the individual level populations within the group to the total
population of the group is unchanged in linearization. In the formal solution
step, one solves exactly for all the individual level populations. The concept
of level groups should not be confused with the concept of superlevels; in the
former case, the level groups are only a numerical trick to make the matrices of
complete linearization smaller, while the level populations are determined ex-
actly; the latter case — superlevels — approximates the individual populations
of the components of the superlevel by assuming that they are in Boltzmann
equilibrium with respect to each other. In fact, one may group the individual
superlevels into level groups as well.

v) Finally, we mention a useful numerical trick that belongs to the category
of reducing NL — level zeroing. We have implemented it in two steps. The
first one is very simple: Whenever a local population of a level becomes lower
than a prescribed fraction of the total population of the species (typically 10~20
to 10730), the population is set exactly as zero, and instead of considering an
appropriate rate equation for such a level, one replaces it by a simple condition
n; = 0. This does not really decrease the number of state parameters, but
improves numerical stability without compromising the final solution.

The second step is called a global zeroing, which simply rejects a level from
the set of state parameters if the population of this level satisfies a zeroing
condition for all depths in the atmosphere. This is a useful approach in all cases
where the selection of explicit energy levels is data-oriented, and the same input
data file is used for atmospheres of quite different basic parameters (e.g., Tef).
The advantage is that one may use a universal data sets for the whole array of
ions of a given species (for instance, Fe 1- Fe xxviI), and let the program itself
determine which levels of which ions make have non-negligible population for
given conditions (see, e.g., AGN disk models computed by a variant of TLUSTY
by Hubeny et al. 2001).

Reducing NC  One possibility is to solve the hydrostatic equilibrium equation
separately (Gustafsson, 1971; Werner 1986; Werner & Dreizler, this volume).
Yet another possibility is to solve the radiative equilibrium equation separately
by a temperature-correction procedure. These methods are discussed in detail in
other papers in this volume (Dreizler; Hauschildt).
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In the context of modified complete linearization, these possibilities usually
do not offer any substantial advantage. In some cases they may lead to a some-
what more stable solution, but typically the iteration process converges slower
or fails to converge at all. The reasons are analogous to those for the failure
of the classical Lambda iteration, and have been explained many times in the
literature (e.g. Mihalas 1978). However, these methods may be very helpful
if one tries to avoid linearization completely. We shall return to this point in
§ 5.2.; see also contributions by Dreizler and by Hauschildt in this Proceedings.

Reducing ND  Again, a trivial possibility is using a coarse depth mesh. This
has an additional benefit that the ALI method converges faster when using a
coarser depth resolution. However, many problems (e.g. model in which one
encounters multiple ionization fronts; convective models; etc.) may require a
large number of depths. But as the computation time is linear in number of
depths, increasing ND is usually not a big problem. Nevertheless, convergence
of ALI-based methods may deteriorate. In such cases one could use multi-grid
schemes (e.g., Trujillo Bueno & Fabiani Bendicho 1995). To our knowledge, such
an approach has not yet been used in the context of the full stellar atmosphere
problem.

Another potentially promising possibility is to use adaptive grid techniques
(e.g., Dorfi & Druri 1987), which, so far, have been used with great success
in radiation-hydrodynamics calculations. Again, these have not yet been used
in the context of stellar atmosphere models. In our opinion, it perhaps may
be one of the most important remaining improvements of classical 1-D stellar
atmosphere modeling techniques.

Reducing Njter Such a reduction can certainly be achieved by an appropriate
modification of the global iteration scheme; for instance the hybrid CL/ALI
method decreases the number of iterations significantly with respect to the ALI
method by itself. What we mean here, however, is a reduction of number of
iterations for a given global scheme. There are different ways to achieve that:

i) The first possibility is to improve the “formal solution”, i.e., all cal-
culations that are done between two subsequent iterations of the linearization
scheme. Typically, linearization provides new values of the components of the
state vector; one may then keep some parameters fixed (e.g., temperature and
density), and compute a more consistent values of others (that is, mean inten-
sities and level populations, and possibly electron density), by a simultaneous
solution of the transfer and the rate equations. Typically, most of the model-
ing programs offer some kind of “Lambda iteration” treatment to improve level
populations In TLUSTY we use another ALI approach with preconditioning (see
§ 5.1.) to update the atomic level populations. The basic idea behind all such
approaches is to determine values of all state parameters as consistently as pos-
sible before entering a new iteration of complete linearization, with the hope
that this helps the overall iteration process. In many cases, it does indeed help
significantly.

i1) One can use mathematical acceleration of convergence procedures. The
most popular one is the Ng acceleration (Ng 1974; Auer 1987, 1991), which was
first used in the context of accelerating a complete-linearization based scheme
to calculate model stellar atmospheres by Hubeny & Lanz (1992), where the
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reader is referred to for more details. Our experience showed that in a vast
majority of cases the Ng acceleration improves convergence significantly; the
acceleration is usually performed for the first time at or around 7-th iteration
of CL, and is done typically every 4 iterations afterwards. In some cases, like
in models with convection, or in AGN disk models with sharp ionization fronts,
the Ng acceleration does not help, and may even lead to numerical problems
and divergence.

i1i) Another potential possibility is to use the successive over-relazation
(SOR) method. It consists in multiplying corrections 1) by a certain coefficient
«a. This coefficient can be either set up by an educated guess, or one can use
a procedure suggested by Trujillo Bueno & Fabiani Bendicho (1995), namely
to express a through the spectral radius of the appropriate iteration operator,
which in turn is given as a ratio of maximum relative changes of the source
function in two subsequent previous iterations.

4.3. Linearization without Inverting the Jacobian

The next class of improvements, which can be used in conjunction with any of
the above methods, is to avoid somehow inverting the Jacobian of the system,
which clearly leads to substantial computer-time savings. In these methods, one
has to perform a few first iterations using the original Newton-Raphson scheme
where the Jacobian is inverted; only when the current estimate of solution is
“close” to the true solution, one may use a simplified treatment. There are
essentially two possibilities:

Broyden inversion The first is an application of the Broyden method, also
called “least change secant method”, introduced by Koesterke, Hamann, & Kos-
mol (1992). Instead of using a Jacobi matrix (which is an analog of tangent
in one dimension), one uses a Broyden matrix, whose analog in 1-D is a se-
cant. The inverse Broyden matrix in the subsequent iteration can be calculated
directly from the previous inverse Broyden matrix. This means that inverting
matrices NN x NN is avoided. The method and its actual application to the
stellar photosphere models is described by Werner & Dreizler in this volume.

Kantorovich method An even simpler method is called Kantorovich method,
which keeps the Jacobian fixed after a certain iteration, so the subsequent itera-
tions of the CL used the same Jacobian (better speaking, the inverse of Jacobian
is kept fixed for future use); only the residuum vectors L are re-evaluated after
each iteration. In the one-dimensional analog, the Newton method computes a
new iterate using the current slope of the tangent, while the Kantorovich variant
keeps the tangent fixed. The method was used by Hillier (1990); the properties
of the method as applied to the CL scheme were studied in detail by Hubeny &
Lanz (1992), who also coined the term Kantorovich method, since Kantorovich
(1949) first proved exactly the convergence of the method. Our experience with
the method showed that the method is surprisingly robust. Usually, one needs
to perform 2-4 iterations of the full linearization scheme, depending on the prob-
lem at hand and the quality of the initial estimate. Also, it is sometimes very
advantageous to “refresh” the Jacobian (i.e., set it up using current solution and
invert it) after certain number of Kantorovich iterations.
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4.4. Approximate Newton-Raphson Method

The method was first suggested by Hempe & Schénberg (1986) in the context
of line formation with velocity fields, and subsequently elaborated and extended
by Hillier (1990) and Hillier & Miller (1998) to treat full spherically expanding
model atmosphere problem.

The method is conceptually very close to the ALI-type methods; it differs
in implementation and in some subtle points. The idea is as follows. We start
with the traditional CL method. Instead of linearizing all the components of
the state vector, we use the transfer equations to eliminate the corrections §J;
from the solution vector. From the linearized transfer equation we have (for
i=1,...,NFandd=1,...,ND)

ND NL+NC aJd
1

§Jia=>, > 83:— 0T jar (14)

d=1 j=1 jd'

where z ;4 are the components of the state vector other than radiation intensities
(i.e., level populations, T', N, and n.), and the 0J;4/0z ;¢ terms can be derived
from linearized transfer equations. The important point is that all components
of this matrix are, in general, nonzero. This is because a discretized transfer
equation (1) can be written in matrix form as

T;J; =S, (15)

where J; = (Ji,...,Jyp)7 is the vector of mean intensities at frequency i, S;
the source vector, and T; is a tridiagonal matrix. Consequently, in J; = T, ls,,
TZ-_1 is a full matrix.

Equation (14) by itself does not offer any advantage, because by using it
the global tri-diagonality of the block system would be destroyed. However, the

trick is to consider an approximate form of equation (14), namely

dta NLENC g
7

5Jid:dz >

'—d—aq j=1

8.73de (5$de , (16)

where a is set either to a = 0 (a diagonal form); or a = 1 (a tridiagonal form);
or possibly even a = 2 (pentadiagonal form). Using equation (16), d.J; can be
eliminated from linearized equations, so one is left with linearizing only NC'+ NL
quantities. Because of the method uses an approximate expression for d.J;, it
earned the name approximate Newton-Raphson (ANR) method.

The method is very similar to the hybrid CL/ALI method described earlier
(if the latter uses a full ALI setup). The only difference is that in ALI methods
one linearizes d.J; = A* §S;, where 6S; is expressed through corrections of other
state parameters (dn;, 0T, dne), but with A* computed on a fixed optical depth
scale. In other words, ANR takes automatically into account a response of
radiation field to changes in source function as well as to the optical depth,
whereas the standard variant of the CL/ALI method takes into account only
the response to changes in the source function.
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4.5. Avoiding Linearization

Finally, we come to the most interesting question: could linearization be avoided
completely? As we mentioned earlier, using a A-iteration-type method (that is,
solving one structural equation at a time and iterating between them), is not at
all a sufficiently robust method. The fundamental reason is that the intimate
coupling between radiation field and other structural parameters is essentially
ignored.

On the other hand, we saw in the previous paper (Hubeny, this volume)
that the ALI method provides an efficient, robust, and fast scheme to treat such
a coupling. We may therefore adopt a different philosophy than that adopted
in complete linearization. We view the transfer equation as a fundamental one,
and all the other structural equations are viewed as “constraint” equations. The
question whether one can avoid linearization in the global stellar atmosphere
problem can then be approached in two consecutive steps: (i) how to formulate a
multilevel problem (i.e. solving simultaneously radiative transfer and statistical
equilibrium) efficiently within the ALI formalism, and without linearization; and
(ii) can one add other structural equations (hydrostatic + radiative equilibrium),
again without a need to linearize? We shall consider these two questions in the
next Section.

5. Role of ALI

5.1. ALI for Multilevel Atoms

To illustrate the basic problem of applying ALI in multilevel problems, we first
write down the expression for the radiative rates. For simplicity, we consider
only lines; the treatment of continua is analogous. The net transition rate for
any line 1 — j is

R = njAji — (niBy —n;Bji)Jyj , (17)

where J;; = [3° ¢i;(v) dv, with ¢;;(v) being the normalized absorption profile
coefficient for transition 4 — j. The basic ALI equation gives for J;;

T = A[S"™V] + (A—A")[S°]. (18)

Here the second term, which may be written as AJ29, is known from the previ-
ous iteration. However, the first term contains S™V, which is a complicated and
generally non—linear function of the “new” populations. An application of ALI
thus eliminates radiation intensity from the rate equations, but at the expense
of ending with a set of non-linear equations for the populations. This can be
dealt with in two different ways:

Linearization The usual way of solving the set of non-linear equations is by
applying the Newton-Raphson method. If a diagonal A* is used, the system has
a block-diagonal form (i.e., no explicit depth coupling), so one needs to perform
ND inversions of NL x NL matrices per iteration.
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Preconditioning. Let us demonstrate the idea of preconditioning on a sim-
ple case, where the total source function is given by the line source function
Sij = njAji/(n;Bij —n;jBj;) (i.e., the case of non-overlapping lines and no back-
ground continuum). Further, assume that A* is a local (diagonal) approximate
A* operator so that each of its elements is simply an ordinary number. The net
rate (17) may be written, after some simple algebra,

R = njA;(1—A%) — (niBij —njBji) AT, (19)

where terms (n;B;; —n;Bj;) canceled in the first term of equation (19), and one
recovered a linear expression. Consequently, the whole set of rate equations is
linear in populations.

The term “preconditioning” comes from the fact that instead of having the
net rate formulated as a subtraction of two terms that may be orders of magni-
tude larger than their difference [as in Eq. (17)], the new form is a subtraction
of two much smaller quantities that are now of similar magnitude as their differ-
ence. Indeed, deep in the atmosphere, A* — 1, so that the first term is indeed
very small. Similarly, the second term is also small because AJ;; is small. In
other words, the radiative rates are preconditioned. In the context of the ALI
approach, this idea was first used by Werner & Husfeld (1985); a systematic
study was presented by Rybicki & Hummer (1991, 1992), who have extended it
to the case of general overlap of lines and continua.

From the physical point of view, preconditioning is related to an ingenious
way to remove inactive (scattering) parts of radiative rates from the rate equa-
tions analytically, and, as a by-product, to recover linearity of the ALI form of
the rate equations (see, e.g., Rybicki, 1984).

The two approaches outlined above seem, at first sight, to be quite different.
Indeed, their original formulations differ quite substantially. However, in a very
interesting paper, Socas-Navarro & Trujillo Bueno (1997) showed that both ap-
proaches, linearization and preconditioning, are essentially equivalent from the
mathematical point of view. These authors showed that linearization takes into
account (in an approximate way) the linear response of the radiation field to the
perturbations in the source function and in opacity, while preconditioning takes
into account the response to the source function perturbations. In a different
variant of these approaches, they can actually both take into account (in an
approximate way) the linear response of the radiation field to the perturbations
in both the source function and in the opacity. The interested reader is referred
to the paper cited for more details.

So, the answer the first question posed in the previous Section is that one can
indeed avoid linearization, but doing so actually does not offer any substantial
benefits.

5.2. Other Constraint Equations

If one adopts a linearization treatment of statistical equilibrium equations with
ALL there is no fundamental problem to include two or three more state param-
eters (T, ne, and N), and to linearize two or three more equations. This was
indeed the approach adopted in the pioneering work of Werner (1986), and in
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the subsequent developments of the Kiel/ Tuebingen code (Werner 1989; Dreizler
& Werner 1993; Werner & Dreizler, this volume).

There is a subtle, but important issue here. An ALI treatment of solving
simultaneously radiative transfer and statistical equilibrium (sometimes called
the restricted non-LTE problem) can be solved separately for individual species,
because there is no direct interaction between species (or if there is, like for
instance in the case of charge transfer reactions, it may be treated iteratively).
This means that instead of solving simultaneously NL = 3, NL, equations (NL
is the total number of levels, and NL, the number of levels for species a), we solve
NA independent problems of NL, equations (NA being the number of species).
Obviously, NL3 > ", NL3, so the savings of computer time are considerable.

However, other structural equations (hydrostatic and radiative equilibrium,
charge conservation) couple all species (either through the total opacity and
emissivity, or through the total charge). Because of that, one has to linearize
the whole set, and thus to invert matrices (NL+ NC) x (NL+ NC). This shows
that being able to treat the other constraint equations separately would lead to
a large reduction of computer time per iteration.

Can this be done? Treating the charge conservation separately is easy, in
particular for hot atmospheres where the material is almost completely ionized,
S0 e is nearly linearly proportional to density. As shown by Gustafsson (1971),
Werner (1986) and others, treating hydrostatic equilibrium equation separately
is also easily possible. The only obstacle is then the radiative equilibrium equa-
tion. Methods that solve it separately are traditionally called “temperature
correction” methods. They were being used extensively before the advent of
complete linearization, and are still being used for LTE models. However, it
was amply demonstrated that such methods may converge very slowly or to
fail to converge altogether in the case of non-LTE models. But, because of the
possibility of achieving a significant reduction of computer time in ALI-based
methods, there has been a recent revival of interest in them. Temperature cor-
rections were used successfully in code PHOENIX (Hauschildt, this volume, and
reference therein), in particular for rapidly expanding atmospheres. This is not
surprising because expansion leads to desaturation of the lines, and a localiza-
tion of state parameters. It was also tested in the context of static plane-parallel
atmospheres (Werner & Dreizler 1999). The question whether there is a tem-
perature correction procedure that can provide a sufficiently robust scheme for
all applications is, however, not yet settled. Because of its potential importance,
the topic of temperature correction is discussed in other papers in this volume
(Dreizler; Hauschildt; Koesterke).

5.3. Hydrid CL/ALI Method

We now return to the hybrid CL/ALI method mentioned in § 4.2., and put
it in a different perspective. The ALI-based methods discussed above start
with the multi-level formulation of ALI, and linearize the resulting set, together
with other structural equations. In contrast, the hybrid CL/ALI scheme (and
the ANR method too), start with the linearized structural equations and then
eliminate §J, from the linearized set using ALI. Although both approaches are
very similar, the hybrid scheme offers a significant benefit, as pointed out by
Hubeny & Lanz (1995): While the ALI treatment is used for most frequency
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points, the radiation intensity at a few selected frequency points may still be
linearized. The method thus offers a wide spectrum of options, ranging from the
full CL to the full ALI method. It was shown that by selecting a few (typically
10-30) frequency points judiciously (typically, at the head of the most opaque
continua, like the hydrogen and He 11 Lyman continua; and in the centers of
strongest lines), the computer time per iteration is essentially the same as in the
case of full ALI, while the number of iterations is essentially the same as in the
case of full CL, i.e. much lower than in the case of true ALI. The method thus
combines two major advantages of its two constituents, namely the convergence
rate being virtually as high as for the standard CL method, while the computer
time per iteration is almost as low as for the standard ALI method.

6. Metal Line Blanketing

By the term line-blanketed model atmospheres we understand models that take
into account effects of “all’ lines of all important species. There are literally
millions of lines that contribute to the opacity; their number is even a few orders
of magnitude higher when considering molecular lines (see papers by Jorgensen
and by Alexander in these Proceedings).

To be able to treat metal line blanketing numerically, a useful method must
be able to work efficiently with a large number of frequency points, and a large
number of energy levels (populations). As discussed in § 4.2., the latter problem
is effectively solved by using the concept of superlevels, possibly together with
level-grouping if one works within the framework of a linearization method.

The problem of a large number of frequencies is dealt with by the an ap-
plication of the ALI method, or by the ANR method. However, although the
frequency points are effectively eliminated from the state vector and thus from
the linearization process, their number may still be too large to prevent handling
all necessary frequencies even in the formal solution of the transfer equation.

To estimate the number of frequency points ideally needed, let us assume
that metal lines are practically everywhere, so one should cover all the frequency
range by frequency points that are spaced proportionally to the value of a fiducial
Doppler width; Av}, = vv*/c, where v is the frequency, v* a characteristic
velocity (given either by a thermal velocity of a characteristic species, e.g. Fe),
or a characteristic turbulent velocity, whichever is larger, and c the light speed.
We require the frequency resolution of a Avj,, where a is an adjustable parameter
(ideally, a value below 1).

The total number of frequency points would then be

Vmax 1

c
NF = N dv = g In(Ymax/Vmin) 5 (20)

VYmin

Assuming for example that we need to cover about three decades in frequency,
and taking a = 0.75, we would need about 10° frequency points for hot models
(v* = 30 km/s), while we need about 10% points for cool models (v* ~ 3 km/s),
or even more for cooler and low-microturbulence models.

It is now becoming possible to accommodate such numbers in modeling
codes, thanks to a dramatic increase of available computer memory and speed.
Only few years ago, however, this was not possible, and therefore one had to
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use approximations to reduce number of needed formal solutions of the transfer
equation. There are essentially two possibilities:

e Opacity Distribution Functions (ODF). In NLTE, this method is used in
conjunction with the concept of superlevels. The transitions between superlevels
are called superlines. The idea is to resample a complicated frequency depen-
dence of the superline cross-section to form a monotonic function of frequency;
this function is then represented by a small number of frequency quadrature
points (Anderson 1989; Hubeny & Lanz 1995).

e Opacity Sampling (OS). The idea is a simple Monte Carlo-like sampling
of frequency points of the superline cross-sections (Anderson 1989; Dreizler &
Werner 1993). The advantage of this approach is that it can easily treat line
blends and overlaps; the disadvantage is that considering too few frequency
points may easily lead to missing many important line cores. On the other
hand, the “exact” method is in fact a variant of the OS with a sufficiently high
resolution, as discussed above.

An explicit comparison between results using the ODF and the OS ap-
proaches, and with various frequency resolutions in the latter, is presented e.g.
in Lanz & Hubeny (this volume).

7. Program TLUSTY

7.1. General Characteristics

The computer program TLUSTY has been described in several papers; Hubeny
(1988) — the original CL version; Hubeny & Lanz (1992) — implementation of Ng
and Kantorovich accelerations; Hubeny, Hummer & Lanz (1994) — treatment of
level dissolution and occupation probabilities; Hubeny & Lanz (1995) — hybrid
CL/ALI method, concept of superlevels and superlines; and Lanz & Hubeny
(2001) - opacity sampling method.

The program solves the basic equations (radiative transfer, hydrostatic equi-
librium, radiative equilibrium, statistical equilibrium, charge and particle con-
servation). However, not all of the basic equations actually have to be solved.
The program has options for omitting some of the equations, while keeping the
corresponding quantities fixed. For instance, one may keep the temperature
fixed and skip the radiative equilibrium equation (all the other equations being
solved exactly); this corresponds to calculating so-called semi-empirical models.

Recently, the previously separate variant called TLUSDISK was combined
into one universal TLUSTY, which thus allows one to compute either a model
stellar atmosphere, or the vertical structure of a given annulus in an accretion
disks. Accretion disk models are described in detail by Hubeny & Hubeny (1998),
and Hubeny et al (2001). Recent upgrades contain an improved treatment of
convection (with several variants of the mixing-length formalism); external ir-
radiation; Compton scattering (described in Hubeny et al. 2001); dielectronic
recombination; and X-ray opacities, including the inner-shell (Auger) ionization
(described in Hubeny et al. 2001). On the low-temperature side, we have re-
cently developed a variant called COOLTLUSTY (described briefly in Burrows et
al. 2002) to work with pre-calculated opacity tables. We currently use opacity
tables appropriate for brown, T, and L dwarfs, and giant planets.
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The program is fully data-oriented as far as the choice of atomic species,
ions, energy levels, transitions, and opacity sources is concerned. We stress that
there are no default opacities built in (only some default formulae for various
cross-sections are included — see paper by Lanz & Hubeny in this Proceedings).

7.2. Numerical Methods

TLUSTY uses the hybrid CL/ALI scheme. There are several formal solvers of
the transfer equation available: Feautrier (2-nd or 4-th order), or Discontinuous
Finite Element scheme (DFE - Castor et al 1992). The A*-operator can be
either diagonal or tri-diagonal, computed as the corresponding part of the exact
A (see Hubeny, this volume). If the Feautrier method is used for a formal solver,
A* is evaluated using Rybicki-Hummer (1991) procedure; if DFE is used, A* is
evaluated as described in Hubeny (this volume).

To further reduce the number of quantities to be linearized, we have im-
plemented the concepts of superlevels, level grouping, and level zeroing, as de-
scribed in §4.2. The corresponding setups are all data-oriented. To reduce the
overall number of iterations, we implemented the Ng acceleration, the Kan-
torovich method, as well as the successive over-relaxation method, again with
all setups being driven by input data.

To improved convergence speed, one can perform an optional number of it-
erations solving simultaneously the transfer and the statistical equilibrium equa-
tions (together with the charge conservation) between two successive iterations
of the global linearization scheme, keeping temperature and density fixed. The
iterations can be either ordinary Lambda iterations, or iterations of the mul-
tilevel atom problem with preconditioning, as described in the § 5.1., for all
species separately.

Both options, ODF and Opacity Sampling, are offered for a treatment of
metal line blanketing. Again, all details of the actual setup are driven by input
data. Until recently, most of our blanketed models were computed using the
ODF approach, which required only about 30,000 - 50,000 frequency points
(e.g., Lanz et al. 1996a, 1996b; Lanz, Hubeny, & Heap 1987); however our recent
models (including the grid described by Lanz & Hubeny in this volume) use the
Opacity Sampling Method with a sampling of 0.75 fiducial Doppler-widths. Hot
(OB) star models need typically about 200,000 frequency points.
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